Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Central Corneal Edema with Scleral-Lens Wear

Abstract

Purpose

To evaluate the safety of scleral-lens designs, we model and clinically assess central corneal edema induced by scleral-lens wear for healthy subjects.

Materials and methods

Central corneal swelling during scleral-lens wear is measured using optical coherence tomography (OCT). Transport resistances are modeled for oxygen diffusion through the scleral lens and post-lens tear-film (PoLTF), and into the cornea. Oxygen deficiency in the cornea activates anaerobic metabolic reactions that induce corneal edema. Oxygen permeability, carbon-dioxide permeability, settled-lens PoLTF thickness, and scleral-lens thickness are varied in the calculations to mimic different lens fits.

Results

Transport modeling predicts that for open eyes, increasing PoLTF thickness from 50 to 400 µm increases central corneal swelling by approximately 1-1.5% when oxygen transmissibility (Dk/L) is greater than 10 hBarrer/cm (i.e., hectoBarrer/cm). Although swelling is larger for oxygen Dk/L < 10 hBarrer/cm, PoLTF thickness has minimal impact in this range. For open eye, oxygen transmissibility of the lens plays a significant role in corneal edema, but is negligible when oxygen Dk/L is > 40 hBarrer/cm. For closed eye, central corneal swelling is greater than 5% for an oxygen Dk/L range of 0-100 hBarrer/cm with typical lens-fitting parameters. For carbon-dioxide transmissibilities increasing from 50 to 250 hBarrer/cm and with a fixed oxygen Dk/L of 25 hBarrer/cm, calculated swelling diminishes by an additional 0.5%. Comparison of model calculations to clinical-swelling data is within the error range of the clinical measurements.

Conclusions

Oxygen/metabolite transport calculations for open-eye scleral-lens wear show that typical PoLTF thicknesses fitted by clinicians (i.e., PoLTF thicknesses < 400 µm) with modern scleral lenses (i.e., oxygen Dk/L > 25 hBarrer/cm) produce corneal swelling of less than 2% in agreement with experiment. Therefore, scleral lenses prescribed today evoke less than physiological hypoxic swelling (i.e., less than 4%) for healthy corneas during open-eye. Closed-eye wear, however, appears clinically unsafe.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View