Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Tunable Cherenkov Radiation of Phonon Polaritons in Silver Nanowire/Hexagonal Boron Nitride Heterostructures

Abstract

Polaritons in two-dimensional (2D) materials have shown their unique capabilities to concentrate light into deep subwavelength scales. Precise control of the excitation and propagation of 2D polaritons has remained a central challenge for future on-chip nanophotonic devices and circuits. To solve this issue, we exploit Cherenkov radiation, a classic physical phenomenon that occurs when a charged particle moves at a velocity greater than the phase velocity of light in that medium, in low-dimensional material heterostructures. Here, we report an experimental observation of Cherenkov phonon polariton wakes emitted by superluminal one-dimensional plasmon polaritons in a silver nanowire and hexagonal boron nitride heterostructure using near-field infrared nanoscopy. The observed Cherenkov radiation direction and radiation rate exhibit large tunability through varying the excitation frequency. Such tunable Cherenkov phonon polaritons provide opportunities for novel deep subwavelength-scale manipulation of light and nanoscale control of energy flow in low-dimensional material heterostructures.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View