Skip to main content
eScholarship
Open Access Publications from the University of California

Enhanced valley splitting of WSe2 in twisted van der Waals WSe2/CrI3 heterostructures

Abstract

Van der Waals (vdW) heterostructures composed of different two-dimensional (2D) materials offer an easily accessible way to combine properties of individual materials for applications. Owing to the discovery of a set of unanticipated physical phenomena, the twisted 2D vdW heterostructures have gained considerable attention recently. Here, we report enhanced valley splitting in twisted 2D vdW WSe2/CrI3 heterostructures. In particular, the splitting can be 1200% (or 5.18 meV) of the value for a non-twisted heterostructure. According to the k·p model, this value is equivalent to a ~20 T external magnetic field applied perpendicular to the 2D sheet. The thermodynamic stability of 2D vdW WSe2/CrI3 heterostructures, on the other hand, depends linearly on the interlayer twisting angle.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View