Skip to main content
Open Access Publications from the University of California

CO2 Signaling through the Ptc2-Ssn3 Axis Governs Sustained Hyphal Development of Candida albicans by Reducing Ume6 Phosphorylation and Degradation.

  • Author(s): Lu, Yang
  • Su, Chang
  • Ray, Shatarupa
  • Yuan, Yuncong
  • Liu, Haoping
  • et al.

Candida albicans is the most common cause of invasive fungal infections in humans. Its ability to sense and adapt to changing carbon dioxide levels is crucial for its pathogenesis. Carbon dioxide promotes hyphal development. The hypha-specific transcription factor Ume6 is rapidly degraded in air, but is stable under physiological CO2 and hypoxia to sustain hyphal elongation. Here, we show that Ume6 stability is regulated by two parallel E3 ubiquitin ligases, SCFGrr1 and Ubr1, in response to CO2 and O2, respectively. To uncover the CO2 signaling pathway that regulates Ume6 stability, we performed genetic screens for mutants unable to respond to CO2 for sustained filamentation. We find that the type 2C protein phosphatase Ptc2 is specifically required for CO2-induced stabilization of Ume6 and hyphal elongation. In contrast, the cyclin-dependent kinase Ssn3 is found to be required for Ume6 phosphorylation and degradation in atmospheric CO2 Furthermore, we find that Ssn3 is dephosphorylated in 5% CO2 in a Ptc2-dependent manner, whereas deletion of PTC2 has no effect on Ssn3 phosphorylation in air. Our study uncovers the Ptc2-Ssn3 axis as a new CO2 signaling pathway that controls hyphal elongation by regulating Ume6 stability in C. albicans IMPORTANCE The capacity to sense and adapt to changing carbon dioxide levels is crucial for all organisms. In fungi, CO2 is a key determinant involved in fundamental biological processes, including growth, morphology, and virulence. In the pathogenic fungus Candida albicans, high CO2 is directly sensed by adenylyl cyclase to promote hyphal growth. However, little is known about the mechanism by which hyphal development is maintained in response to physiological levels of CO2 Here we report that a signal transduction system mediated by a phosphatase-kinase pair controls CO2-responsive Ume6 phosphorylation and stability that in turn dictate hyphal elongation. Our results unravel a new regulatory mechanism of CO2 signaling in fungi.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View