Skip to main content
eScholarship
Open Access Publications from the University of California

In-situ characterization of highly reversible phase transformation by synchrotron X-ray Laue microdiffraction

  • Author(s): Chen, X
  • Tamura, N
  • Macdowell, A
  • James, RD
  • et al.

Published Web Location

https://doi.org/10.1063/1.4951001
Abstract

© 2016 Author(s). The alloy Cu25Au30Zn45undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. This alloy was discovered by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructures are those predicted by the cofactor conditions. To verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.

Main Content
Current View