Skip to main content
eScholarship
Open Access Publications from the University of California

A general framework for quantitatively assessing ecological stochasticity

Abstract

Understanding the community assembly mechanisms controlling biodiversity patterns is a central issue in ecology. Although it is generally accepted that both deterministic and stochastic processes play important roles in community assembly, quantifying their relative importance is challenging. Here we propose a general mathematical framework to quantify ecological stochasticity under different situations in which deterministic factors drive the communities more similar or dissimilar than null expectation. An index, normalized stochasticity ratio (NST), was developed with 50% as the boundary point between more deterministic (<50%) and more stochastic (>50%) assembly. NST was tested with simulated communities by considering abiotic filtering, competition, environmental noise, and spatial scales. All tested approaches showed limited performance at large spatial scales or under very high environmental noise. However, in all of the other simulated scenarios, NST showed high accuracy (0.90 to 1.00) and precision (0.91 to 0.99), with averages of 0.37 higher accuracy (0.1 to 0.7) and 0.33 higher precision (0.0 to 1.8) than previous approaches. NST was also applied to estimate stochasticity in the succession of a groundwater microbial community in response to organic carbon (vegetable oil) injection. Our results showed that community assembly was shifted from more deterministic (NST = 21%) to more stochastic (NST = 70%) right after organic carbon input. As the vegetable oil was consumed, the community gradually returned to be more deterministic (NST = 27%). In addition, our results demonstrated that null model algorithms and community similarity metrics had strong effects on quantifying ecological stochasticity.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View