- Main
A purely kinetic description of the evaporation of water droplets
Published Web Location
https://doi.org/10.1063/5.0037967Abstract
The process of water evaporation, although deeply studied, does not enjoy a kinetic description that captures known physics and can be integrated with other detailed processes such as drying of catalytic membranes embedded in vapor-fed devices and chemical reactions in aerosol whose volumes are changing dynamically. In this work, we present a simple, three-step kinetic model for water evaporation that is based on theory and validated by using well-established thermodynamic models of droplet size as a function of time, temperature, and relative humidity as well as data from time-resolved measurements of evaporating droplet size. The kinetic mechanism for evaporation is a combination of two limiting processes occurring in the highly dynamic liquid-vapor interfacial region: direct first order desorption of a single water molecule and desorption resulting from a local fluctuation, described using third order kinetics. The model reproduces data over a range of relative humidities and temperatures only if the interface that separates bulk water from gas phase water has a finite width, consistent with previous experimental and theoretical studies. The influence of droplet cooling during rapid evaporation on the kinetics is discussed; discrepancies between the various models point to the need for additional experimental data to identify their origin.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-