Skip to main content
eScholarship
Open Access Publications from the University of California

Bound states and the Bekenstein bound

  • Author(s): Bousso, Raphael
  • et al.
Abstract

We explore the validity of the generalized Bekenstein bound, S <= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width alpha. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.

Main Content
Current View