Skip to main content
eScholarship
Open Access Publications from the University of California

The use of the bimodal production decline curve for the analysis of hydraulically fractured shale/tight gas reservoirs

  • Author(s): Doughty, C
  • Moridis, GJ
  • et al.
Abstract

The capability to conduct a rapid, near real-time model-based analysis of production data from tight/shale (TS) gas fields is important in determining fracture and matrix properties. Model-based analysis of production can range from simple analytical solutions to complex numerical models. The objective of this study is to develop a simple, Excel-based tool for the analysis of the complex problem of gas production from a fractured TS gas reservoir that is based on a robust model that is faithful to the underlying physics and can provide rapid estimates of the important system parameters. The scientifically robust model used as the basis for this tool is a significant modification and expansion of the bimodal production decline curve of Silin and Kneafsey (2012). The production period is divided into two regimes: an early-time regime before the extent of the stimulated reservoir volume (SRV) is felt, where an analytical similarity solution for gas production rate is obtained, and a late-time regime where the rate can be approximated with an exponential decline or more accurately represented with a numerical integration. Our basic model follows Silin and Kneafsey (2012) and produces the widely observed -½ slope on a log-log plot of early-time production decline curves, while our expanded model generalizes this slope to –n, where 0 < n < 1, to represent non-ideal flow geometries. The expanded model was programmed into an Excel spreadsheet to develop an interactive, user-friendly application for curve matching of well production data to the bimodal curve, from which matrix and fracture properties can be extracted. This tool allows significant insight into the model parameters that control the reservoir behavior and production: the geometry of the hydraulically-induced fracture network, its flow and transport properties, and the optimal operational parameters. This information enables informed choices about future operations, and is valuable in several different ways: (a) to estimate reserves and to predict future production, including expected ultimate recovery and the useful lifetime of the stage or the well; (b) if curve-matching is unsuccessful, to indicate the inadequacy of the mathematical model and the need for more complex numerical model to analyze the system; (c) to verify/validate numerical models, and to identify anomalous behavior or measurement errors in the data. The present approach can be adapted to gas-flow problems in dual-permeability media (hydraulically or naturally fractured) or highly heterogeneous sedimentary rock, as well as to retrograde condensation.

Main Content
Current View