- Main
Reconstruction of three-dimensional scroll waves in excitable media from two-dimensional observations using deep neural networks.
Published Web Location
https://doi.org/10.1103/PhysRevE.107.014221Abstract
Scroll wave dynamics are thought to underlie life-threatening ventricular fibrillation. However, direct observations of three-dimensional electrical scroll waves remain elusive, as there is no direct way to measure action potential wave patterns transmurally throughout the thick ventricular heart muscle. Here we study whether it is possible to reconstruct simulated scroll waves and scroll wave chaos using deep learning. We trained encoding-decoding convolutional neural networks to predict three-dimensional scroll wave dynamics inside bulk-shaped excitable media from two-dimensional observations of the wave dynamics on the bulks surface. We tested whether observations from one or two opposing surfaces would be sufficient and whether transparency or measurements of surface deformations enhances the reconstruction. Further, we evaluated the approachs robustness against noise and tested the feasibility of predicting the bulks thickness. We distinguished isotropic and anisotropic, as well as opaque and transparent, excitable media as models for cardiac tissue and the Belousov-Zhabotinsky chemical reaction, respectively. While we demonstrate that it is possible to reconstruct three-dimensional scroll wave dynamics, we also show that it is challenging to reconstruct complicated scroll wave chaos and that prediction outcomes depend on various factors such as transparency, anisotropy, and ultimately the thickness of the medium compared to the size of the scroll waves. In particular, we found that anisotropy provides crucial information for neural networks to decode depth, which facilitates the reconstructions. In the future, deep neural networks could be used to visualize intramural action potential wave patterns from epi- or endocardial measurements.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-