Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Time-reversal symmetry breaking in two-dimensional nonequilibrium viscous fluids

Abstract

We study the rheological signatures of departure from equilibrium in two-dimensional viscous fluids with and without internal spin. Under the assumption of isotropy, we provide the most general linear constitutive relations for stress and couple stress in terms of the velocity and spin fields. Invoking Onsager's regression hypothesis for fluctuations about steady states, we derive the Green-Kubo formulas relating the transport coefficients to time-correlation functions of the fluctuating stress. In doing so, we show that one of the nonequilibrium transport coefficients, the odd viscosity, requires time-reversal symmetry breaking in the case of systems without internal spin. However, the Green-Kubo relations for systems with internal spin also show that there is a possibility for nonvanishing odd viscosity even when time-reversal symmetry is preserved. Furthermore, we find that breakdown of equipartition in nonequilibrium steady states results in the decoupling of the two rotational viscosities relating the vorticity and the internal spin.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View