Skip to main content
eScholarship
Open Access Publications from the University of California

Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

  • Author(s): Chung Kwong, K
  • Mei Chim, M
  • Davies, J
  • Wilson, K
  • Nin Chan, M
  • et al.
Abstract

© Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85%. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79±0.19) × 1013cm3molecule1s1 with an effective OH uptake coefficient, 3eff, of 0.17±0.03. While about 40% of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012moleculecm3s), only a 3% decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an organosulfate can lead to the formation of sulfate radical anion and produce inorganic sulfate. Fragmentation processes and sulfate radical anion chemistry play a key role in determining the compositional evolution of sodium methyl sulfate during heterogeneous OH oxidation.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View