Skip to main content
Download PDF
- Main
Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma
Published Web Location
https://doi.org/10.1093/noajnl/vdac060Abstract
Background
Glioblastoma is the most common primary brain malignancy, yet treatment options are limited, and prognosis remains guarded. Individualized tumor genetic assessment has become important for accurate prognosis and for guiding emerging targeted therapies. However, challenges remain for widespread tumor genetic testing due to costs and the need for tissue sampling. The aim of this study is to evaluate a novel artificial intelligence method for predicting clinically relevant genetic biomarkers from preoperative brain MRI in patients with glioblastoma.Methods
We retrospectively analyzed preoperative MRI data from 400 patients with glioblastoma, IDH-wildtype or WHO grade 4 astrocytoma, IDH mutant who underwent resection and genetic testing. Nine genetic biomarkers were assessed: hotspot mutations of IDH1 or TERT promoter, pathogenic mutations of TP53, PTEN, ATRX, or CDKN2A/B, MGMT promoter methylation, EGFR amplification, and combined aneuploidy of chromosomes 7 and 10. Models were developed to predict biomarker status from MRI data using radiomics features, convolutional neural network (CNN) features, and a combination of both.Results
Combined model performance was good for IDH1 and TERT promoter hotspot mutations, pathogenic mutations of ATRX and CDKN2A/B, and combined aneuploidy of chromosomes 7 and 10, with receiver operating characteristic area under the curve (ROC AUC) >0.85 and was fair for all other tested biomarkers with ROC AUC >0.7. Combined model performance was statistically superior to individual radiomics and CNN feature models for prediction chromosome 7 and 10 aneuploidy, MGMT promoter methylation, and PTEN mutation.Conclusions
Combining radiomics and CNN features from preoperative MRI yields improved noninvasive genetic biomarker prediction performance in patients with WHO grade 4 diffuse astrocytic gliomas.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%