Skip to main content
eScholarship
Open Access Publications from the University of California

SYSTEMS OF DIFFERENTIAL EQUATIONSTHAT ARE COMPETITIVE OR COOPERATIVE II:CONVERGENCE ALMOST EVERYWHERE*MORRIS W. HIRSCH

  • Author(s): Hirsch, Morris W
  • et al.
Abstract

A vector field in n-space determines a competitive (or cooperative) system of differential equations provided all of the off-diagonal terms of its Jacobian matrix are nonpositive (or nonnegative). The main results in this article are the following. A cooperative system cannot have nonconstant attracting periodic solutions. In a cooperative system whose Jacobian matrices are irreducible the forward orbit converges for almost every point having compact forward orbit closure. In a cooperative system in 2 dimensions, every solution is eventually monotone.  Applications are made to generalizations of positive feedback loops.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View