Skip to main content
eScholarship
Open Access Publications from the University of California

Direct observation of the complex S(IV) equilibria at the liquid-vapor interface.

Abstract

The multi-phase oxidation of S(IV) plays a crucial role in the atmosphere, leading to the formation of haze and severe pollution episodes. We here contribute to its understanding on a molecular level by reporting experimentally determined pKa values of the various S(IV) tautomers and reaction barriers for SO2 formation pathways. Complementary state-of-the-art molecular-dynamics simulations reveal a depletion of bisulfite at low pH at the liquid-vapor interface, resulting in a different tautomer ratio at the interface compared to the bulk. On a molecular-scale level, we explain this with the formation of a stable contact ion pair between sulfonate and hydronium ions, and with the higher energetic barrier for the dehydration of sulfonic acid at the liquid-vapor interface. Our findings highlight the contrasting physicochemical behavior of interfacial versus bulk environments, where the pH dependence of the tautomer ratio reported here has a significant impact on both SO2 uptake kinetics and reactions involving NOx and H2O2 at aqueous aerosol interfaces.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View