Skip to main content
eScholarship
Open Access Publications from the University of California

Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO2on Copper?

  • Author(s): Garza, AJ
  • Bell, AT
  • Head-Gordon, M
  • et al.
Abstract

© 2018 American Chemical Society. It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO2on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. The rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 103s-1. Oxygen can survive longer in deeper layers, but it does not promote CO2adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107s-1). Once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO2adsorption on copper.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View