Skip to main content
eScholarship
Open Access Publications from the University of California

Fouling propensity of a poly(vinylidene fluoride) microfiltration membrane to several model oil/water emulsions

  • Author(s): He, Z
  • Miller, DJ
  • Kasemset, S
  • Wang, L
  • Paul, DR
  • Freeman, BD
  • et al.

Published Web Location

https://doi.org/10.1016/j.memsci.2016.04.018
No data is associated with this publication.
Abstract

© 2016 Elsevier B.V. Laboratory membrane fouling studies are often performed with a single foulant. However, studies comparing the behavior of different foulants using a single membrane are rarely reported. In this study, a poly(vinylidene fluoride) (PVDF) microfiltration membrane was challenged with a series of aqueous-based model fouling media, including a suspension of latex beads, as well as soybean, motor and crude oil emulsions, in constant permeate flux fouling experiments. The critical and threshold fluxes were determined for each membrane-foulant pair. Constant permeate flux crossflow fouling experiments were performed at both low and high fluxes. A direct comparison of the fouling propensity of the PVDF membrane to the four fouling media was made. The fouling propensity was evaluated based on threshold flux values and the extent of transmembrane pressure (TMP) increase during constant permeate flux fouling experiments. In this study, the zeta potential of various fouling media correlated with their fouling propensities. The higher the zeta potential, the lower the fouling propensity. The fouling propensity followed the order of: latex beads

Main Content

This item is under embargo until June 26, 2021.