Convective overshooting and penetration in a Boussinesq spherical shell
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Convective overshooting and penetration in a Boussinesq spherical shell

Abstract

We study the dynamics associated with the extension of turbulent convective motions from a convection zone (CZ) into a stable region (RZ) that lies below the latter. For that purpose, we have run a series of three-dimensional direct numerical simulations solving the Navier-Stokes equations under the Boussinesq approximation in a spherical shell geometry. We observe that the overshooting of the turbulent motions into the stably stratified region depends on three different parameters: the relative stability of the RZ, the transition width between the two, and the intensity of the turbulence. In the cases studied, these motions manage to partially alter the thermal stratification and induce thermal mixing, but not so efficiently as to extend the nominal CZ further down into the stable region. We find that the kinetic energy below the convection zone can be modeled by a half-Gaussian profile whose amplitude and width can be predicted a priori for all of our simulations. We examine different dynamical lengthscales related to the depth of the extension of the motions into the RZ, and we find that they all scale remarkably well with a lengthscale that stems from a simple energetic argument. We discuss the implications of our findings for 1D stellar evolution calculations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View