- Greco, G
- Kondrashov, D
- Kobayashi, S
- Ghil, M
- Branchesi, M
- Guidorzi, C
- Stratta, G
- Ciszak, M
- Marino, F
- Ortolan, A
- et al.
We present a data-adaptive spectral method – Monte Carlo Singular Spectrum Analysis (MC-SSA) – and its modification to tackle astrophysical problems. Through numerical simulations we show the ability of the MC-SSA in dealing with 1/f power-law noise affected by photon counting statistics. Such noise process is simulated by a first-order autoregressive, AR(1) process corrupted by intrinsic Poisson noise. In doing so, we statistically estimate a basic stochastic variation of the source and the corresponding fluctuations due to the quantum nature of light. In addition, MC-SSA test retains its effectiveness even when a significant percentage of the signal falls below a certain level of detection, e.g., caused by the instrument sensitivity. The parsimonious approach presented here may be broadly applied, from the search for extrasolar planets to the extraction of low-intensity coherent phenomena probably hidden in high energy transients. β