Cataloging the neuronal cell types that comprise circuitry of individual
brain regions is a major goal of modern neuroscience and the BRAIN initiative.
Single-cell RNA sequencing can now be used to measure the gene expression
profiles of individual neurons and to categorize neurons based on their gene
expression profiles. While the single-cell techniques are extremely powerful
and hold great promise, they are currently still labor intensive, have a high
cost per cell, and, most importantly, do not provide information on spatial
distribution of cell types in specific regions of the brain. We propose a
complementary approach that uses computational methods to infer the cell types
and their gene expression profiles through analysis of brain-wide single-cell
resolution in situ hybridization (ISH) imagery contained in the Allen Brain
Atlas (ABA). We measure the spatial distribution of neurons labeled in the ISH
image for each gene and model it as a spatial point process mixture, whose
mixture weights are given by the cell types which express that gene. By fitting
a point process mixture model jointly to the ISH images, we infer both the
spatial point process distribution for each cell type and their gene expression
profile. We validate our predictions of cell type-specific gene expression
profiles using single cell RNA sequencing data, recently published for the
mouse somatosensory cortex. Jointly with the gene expression profiles, cell
features such as cell size, orientation, intensity and local density level are
inferred per cell type.