Skip to main content
Download PDF
- Main
Resolving Stanley's conjecture on \(k\)-fold acyclic complexes
© 2021 by the author(s). Learn more.
Abstract
In 1993 Stanley showed that if a simplicial complex is acyclic over some field, then its face poset can be decomposed into disjoint rank \(1\) boolean intervals whose minimal faces together form a subcomplex. Stanley further conjectured that complexes with a higher notion of acyclicity could be decomposed in a similar way using boolean intervals of higher rank. We provide an explicit counterexample to this conjecture. We also prove a version of the conjecture for boolean trees and show that the original conjecture holds when this notion of acyclicity is as high as possible.
Mathematics Subject Classifications: 05E45, 55U10
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%