Skip to main content
Open Access Publications from the University of California

Why are reckless socks not (more of) a thing? Towards an empirical classification of evaluative concepts.


This paper proposes new empirical classifiers for evaluative concepts, including thin concepts like 'good' or 'bad' and thick concepts such as 'honest' or 'disgusting', based on quantitative corpus linguistics. Prior work in experimental philosophy has shown that sentiment analysis can be used to track differences between concept classes. Building on this, Task 1 investigates whether the relationship between sentiment and evaluativeness is parabolic rather than linear. Task 2 extends this question to the differences between evaluative and non-evaluative concept classes. The results of both Tasks show that the linear and the parabolic logistic regression classifiers perform equally well. Interestingly, this study also finds that adjectives attributed to animate entities (e.g. "generous customer") generally have a higher probability to be evaluative concepts than those attributed to inanimate entities (e.g."dry soil").

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View