Skip to main content
eScholarship
Open Access Publications from the University of California

Repeatability of contour method residual stress measurements for a range of materials, processes, and geometries

  • Author(s): Olson, MD
  • DeWald, AT
  • Hill, MR
  • et al.
Abstract

Copyright © 2018 by ASTM International. This article examines the precision of the contour method using five residual stress measurement repeatability studies. The test specimens evaluated include the following: an aluminum T-section, a stainless steel plate with a dissimilar metal slot-filled weld, a stainless steel forging, a titanium plate with an electron beam slot-filled weld, and a nickel disk forging. These specimens were selected to encompass a range of typical materials and residual stress distributions. Each repeatability study included contour method measurements on five to ten similar specimens. Following completion of the residual stress measurements, an analysis was performed to determine the repeatability standard deviation of each population. In general, the results of the various repeatability studies are similar. The repeatability standard deviation tends to be relatively small throughout the part interior, and there are localized regions of higher repeatability standard deviations along the part perimeter. The repeatability standard deviations over much of the cross section range from 5 MPa for the aluminum T-section to 25 MPa for the nickel disk forging. There is a strong correlation between the elastic modulus of the material and the repeatability standard deviation. These results demonstrate the precision of the contour method over a broad range of specimen geometries, materials, and stress states.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View