Skip to main content
Open Access Publications from the University of California

Modelling Competitive Human Action using Dynamical Motor Primitives for the Development of Human-Like Artificial Agents


With artificial intelligence technologies becoming commonplace today, enhancing the efficiency of human-artificial agent (AA) interactions has become increasingly important. A growing body of research has revealed how dynamic motor primitives (DMPs) of human perceptual-motor behavior can be used to create ‘human-like’ AAs, primarily focusing on cooperative tasks. Using air hockey as a representative task, the current experiment is the first part of a large study aimed at determining the utility of DMP-based models for developing ‘human-like’ competitive AAs. Participants played against a preliminary DMP model and the differences in their behaviors were analyzed. Based on these observed differences, a revised model is proposed, with preliminary results revealing that the new model exhibits behaviors more consistent with those of humans. A major implication of this work is that it presents a framework for creating ‘human-like’ AAs that capture the essential human decision and movement dynamics without requiring large human gameplay datasets.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View