Skip to main content
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Demonstration of a pseudo-magnetization based simultaneous write and read operation in a Co60Fe20B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructure


Taking advantage of the magnetoelectric and its inverse effect, this article demonstrates strain-mediated magnetoelectric write and read operations simultaneously in Co60Fe20B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures based on a pseudo-magnetization µ ≡ mx2 - my2. By applying an external DC-voltage across a (011)-cut PMN-PT substrate, the ferroelectric polarization is re-oriented, which results in an anisotropic in-plane strain that transfers to the CoFeB thin film and changes its magnetic anisotropy Hk. The change in Hk in-turn results in a 90° rotation of the magnetic easy axis for sufficiently high voltages. Simultaneously, the inverse effect is employed to read changes of the magnetic properties. The change of magnetization in ferromagnetic (FM) layer induces an elastic stress in the piezoelectric (PE) layer, which generates a PE potential that can be used to readout the magnetic state of the FM layer. The experimental results are in excellent qualitative agreement with an equivalent circuit model that considers how magnetic properties are electrically controlled in such a PE/FM heterostructure and how a back-voltage is generated due to changing magnetic properties in a self-consistent model. We demonstrated that a change of easy axis of magnetization due to an applied voltage can be directly used for information processing, which is essential for future ME based devices.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View