Skip to main content
eScholarship
Open Access Publications from the University of California

Evolution of technetium speciation in reducing grout

Abstract

Cementitious waste forms (CWFs) are an important component of the strategy to immobilize high-level nuclear waste resulting from plutonium production by the U.S. Department of Energy (DOE). Technetium (99Tc) is an abundant fission product of particular concern in CWFs due to the high solubility and mobility of pertechnetate, TcO4-, the stable form of technetium in aerobic environments. CWFs can more effectively immobilize 99Tc if they contain additives that reduce mobile TcO4- to immobile Tc(IV) species. Leaching of 99Tc from reducing CWFs that contain Tc(IV) is much slower than for CWFs containing TcO4-. Previous X-ray absorption fine structure (XAFS) studies showed that he Tc(IV) species were oxidized to TcO4- in reducing grout samples prepared on a laboratory scale. Whether the oxidizer was atmospheric O2 or NO3- in the waste simulant was not determined. In actual CWFs, rapid oxidation of Tc(IV) by NO3- would be a concern, whereas oxidation by atmospheric O2 would be of less concern due to the slow diffusion and reaction of O2 with the reducing CWF. To address this uncertainty, two series of reducing grouts were prepared using TcO4- containing waste simulants with and without NO3-. In the first series of samples, the TcO4- was completely reduced using Na2S, and the samples were placed in containers that permitted O2 diffusion. In these samples, all of the technetium was initially present as a Tc(IV) sulfide compound, TcSx, which was characterized using extended X-ray absorption fine structure (EXAFS) spectroscopy, and is likely Tc2S7. The TcSx initially present in the grout samples was steadily oxidized over 4 years. In the second series of samples, all of the TcO4- was not initially reduced, and the grout samples were placed in airtight containers. In these samples, the remaining TcO4- continued to be reduced as the samples aged, presumably due to the presence of reducing blast furnace slag. When samples in the second series were exposed to atmosphere, the lower-valent technetium species were rapidly oxidized to TcO4-.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View