Skip to main content
Open Access Publications from the University of California

CO2 plume evolution in a depleted natural gas reservoir: Modeling of conformance uncertainty reduction over time


Uncertainty in the long-term fate of CO2 injected for geologic carbon sequestration (GCS) is a significant barrier to the adoption of GCS as a greenhouse-gas emission-mitigation for industry and regulatory agencies alike. We present a modeling study that demonstrates that the uncertainty in forecasts of GCS site performance decreases over time as monitoring data are used to update operational models. We consider a case study of GCS in a depleted natural gas reservoir, with CO2 injection occurring over 20 years, with a 50-year post-injection site care period. We constructed a detailed model to generate the actual model output, which is considered synthetic observation data. A series of simpler operational models based on limited data and assumptions about how an operator would model such a site are then run and compared against actual model output at specific monitoring points after one year, two years, etc. The operational model is updated and improved using the synthetic observation data from the actual model at the same time intervals. Model parameter values and model features needed to be updated over time to improve matches to the actual model. These kinds of model adjustments would be a normal part of reservoir engineering and site management at GCS sites. Uncertainty in two key measures related to site performance decreases with time: extent of the CO2 plume up-dip migration, and radial extent of the pressure pulse. This conclusion should help allay the concerns of industry and regulators about uncertainty in long-term fate of CO2 at GCS sites.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View