Skip to main content
Open Access Publications from the University of California

Impact of Internally Developed Electronic Prescription on Prescribing Errors at Discharge from the Emergency Department

Creative Commons 'BY' version 4.0 license

Introduction: Medication errors are common, with studies reporting at least one error per patient encounter. At hospital discharge, medication errors vary from 15%-38%. However, studies assessing the effect of an internally developed electronic (E)-prescription system at discharge from an emergency department (ED) are comparatively minimal. Additionally, commercially available electronic solutions are cost-prohibitive in many resource-limited settings. We assessed the impact of introducing an internally developed, low-cost E-prescription system, with a list of commonly prescribed medications, on prescription error rates at discharge from the ED, compared to handwritten prescriptions.

Methods: We conducted a pre- and post-intervention study comparing error rates in a randomly selected sample of discharge prescriptions (handwritten versus electronic) five months pre and four months post the introduction of the E-prescription. The internally developed, E-prescription system included a list of 166 commonly prescribed medications with the generic name, strength, dose, frequency and duration. We included a total of 2,883 prescriptions in this study: 1,475 in the pre-intervention phase were handwritten (HW) and 1,408 in the post-intervention phase were electronic. We calculated rates of 14 different errors and compared them between the pre- and post-intervention period.

Results: Overall, E-prescriptions included fewer prescription errors as compared to HW- prescriptions. Specifically, E-prescriptions reduced missing dose (11.3% to 4.3%, p <0.0001), missing frequency (3.5% to 2.2%, p=0.04), missing strength errors (32.4% to 10.2%, p <0.0001) and legibility (0.7% to 0.2%, p=0.005). E-prescriptions, however, were associated with a significant increase in duplication errors, specifically with home medication (1.7% to 3%, p=0.02).

Conclusion: A basic, internally developed E-prescription system, featuring commonly used medications, effectively reduced medication errors in a low-resource setting where the costs of sophisticated commercial electronic solutions are prohibitive.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View