Skip to main content
eScholarship
Open Access Publications from the University of California

Atomistic Positioning of Defects in Helium Ion Treated Single-Layer MoS2.

  • Author(s): Mitterreiter, Elmar
  • Schuler, Bruno
  • Cochrane, Katherine A
  • Wurstbauer, Ursula
  • Weber-Bargioni, Alexander
  • Kastl, Christoph
  • Holleitner, Alexander W
  • et al.
Abstract

Structuring materials with atomic precision is the ultimate goal of nanotechnology and is becoming increasingly relevant as an enabling technology for quantum electronics/spintronics and quantum photonics. Here, we create atomic defects in monolayer MoS2 by helium ion (He-ion) beam lithography with a spatial fidelity approaching the single-atom limit in all three dimensions. Using low-temperature scanning tunneling microscopy (STM), we confirm the formation of individual point defects in MoS2 upon He-ion bombardment and show that defects are generated within 9 nm of the incident helium ions. Atom-specific sputtering yields are determined by analyzing the type and occurrence of defects observed in high-resolution STM images and compared with Monte Carlo simulations. Both theory and experiment indicate that the He-ion bombardment predominantly generates sulfur vacancies.

Main Content
Current View