Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Evaluation of Autogenous Engineered Septal Cartilage Grafts in Rabbits: A Minimally Invasive Preclinical Model

Abstract

Objectives

Evaluate safety of autogenous engineered septal neocartilage grafts.Compare properties of implanted grafts versus in vitro controls.

Study design

Prospective, basic science.

Setting

Research laboratory.

Methods

Constructs were fabricated from septal cartilage and serum harvested from adult rabbits and then cultured in vitro or implanted on the nasal dorsum as autogenous grafts for 30 or 60 days. Rabbits were monitored for local and systemic complications. Histological, biochemical and biomechanical properties of implanted and in vitro constructs were evaluated and compared.

Results

No systemic or serious local complications were observed. After 30 and 60 days, implanted constructs contained more DNA (p<0.01) and less sGAG per DNA (p<0.05) when compared with in vitro controls. Confined compressive aggregate moduli were also higher in implanted constructs when compared with in vitro controls (p<0.05) and increased with longer in vivo incubation time (p<0.01). Implanted constructs displayed resorption rates of 20-45 percent. Calcium deposition in implanted constructs was observed using alizarin red histochemistry and microtomographic analyses.

Conclusion

Autogenous engineered septal cartilage grafts were well tolerated. As seen in experiments with athymic mice, implanted constructs accumulated more DNA and less sGAG when compared with in vitro controls. Confined compressive aggregate moduli were also higher in implanted constructs. Implanted constructs displayed resorption rates similar to previously published studies using autogenous implants of native cartilage. The basis for observed calcification in implanted constructs and its effect on long-term graft efficacy is unknown at this time and will be a focus of future studies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View