- Main
Relation learning in a neurocomputational architecture supports cross-domaintransfer
Abstract
Humans readily generalize, applying prior knowledge to novelsituations and stimuli. Advances in machine learning have be-gun to approximate and even surpass human performance, butthese systems struggle to generalize what they have learnedto untrained situations. We present a model based on well-established neurocomputational principles that demonstrateshuman-level generalisation. This model is trained to play onevideo game (Breakout) and performs one-shot generalisationto a new game (Pong) with different characteristics. The modelgeneralizes because it learns structured representations that arefunctionally symbolic (viz., a role-filler binding calculus) fromunstructured training data. It does so without feedback, andwithout requiring that structured representations are specifieda priori. Specifically, the model uses neural co-activation todiscover which characteristics of the input are invariant and tolearn relational predicates, and oscillatory regularities in net-work firing to bind predicates to arguments. To our knowledge,this is the first demonstration of human-like generalisation ina machine system that does not assume structured representa-tions to begin with.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-