Skip to main content
Download PDF
- Main
Proof of the Kakeya set conjecture over rings of integers modulo square-free N
© 2021 by the author(s). Learn more.
Abstract
A Kakeya set \(S \subset (\mathbb{Z}/N\mathbb{Z})^n\) is a set containing a line in each direction. We show that, when \(N\) is any square-free integer, the size of the smallest Kakeya set in \((\mathbb{Z}/N\mathbb{Z})^n\) is at least \(C_{n,\epsilon} N^{n - \epsilon}\) for any \(\epsilon\) -- resolving a special case of a conjecture of Hickman and Wright. Previously, such bounds were only known for the case of prime \(N\). We also show that the case of general \(N\) can be reduced to lower bounding the \(\mathbb{F}_p\) rank of the incidence matrix of points and hyperplanes over \((\mathbb{Z}/p^k\mathbb{Z})^n\).
Mathematics Subject Classifications: 05B20, 05B25
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%