Skip to main content
Open Access Publications from the University of California

Nexus of thermal resilience and energy efficiency in buildings: A case study of a nursing home


Extreme weather events become more frequent and severe due to climate change. Although energy efficiency technologies can influence thermal resilience of buildings, they are traditionally studied separately, and their interconnections are rarely quantified. This study developed a methodology of modeling and analysis to provide insights into the nexus of thermal resilience and energy efficiency of buildings. We conducted a case study of a real nursing home in Florida, where 12 patients died during Hurricane Irma in 2017 due to HVAC system power loss, to understand and quantify how passive and active energy efficiency measures (EEMs) can improve thermal resilience to reduce heat-exposure risk of patients. Results show that passive measures of opening windows and doors for natural ventilation, as well as miscellaneous load reduction, are very effective in eliminating the extreme dangerous occasions. However, to maintain safe conditions, active measures such as on-site power generators and thermal storage are also needed. The nursing home was further studied by changing its location to two other cities: San Francisco (mild climate) and Chicago (cold winter and hot summer). Results revealed that the EEMs' impacts on thermal resilience vary significantly by climate and building characteristics. The study also estimated the costs of EEMs to help stakeholders prioritize the measures. Passive measures that may not save energy may greatly improve thermal resilience, and thus should be considered in building design or retrofit. Findings from this study indicate energy efficiency technologies should be evaluated not only by their energy savings performance but also by their influence on a building's resilience to extreme weather events.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View