Skip to main content
eScholarship
Open Access Publications from the University of California

Direct observation of ice nucleation events on individual atmospheric particles

Abstract

Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood, partially due to the lack of experimental methods capable of obtaining in situ microscopic details of ice formation over nucleating substrates or particles. We present microscopic observations of ice nucleation events on kaolinite particles at the nanoscale and demonstrate the capability of direct tracking and micro-spectroscopic characterization of individual ice nucleating particles (INPs) in an authentic atmospheric sample. This approach utilizes a custom-built ice nucleation cell, interfaced with an Environmental Scanning Electron Microscope (IN-ESEM platform) operated at temperatures and relative humidities relevant for heterogeneous ice nucleation. The IN-ESEM platform allows dynamic observations of individual ice formation events over particles in isobaric and isothermal experiments. Isothermal experiments on individual kaolinite particles demonstrate that ice crystals preferably nucleate at the edges of the stacked kaolinite platelets, rather than on their basal planes. These experimental observations of the location of ice nucleation provide direct information for further theoretical chemistry predictions of ice formation on kaolinite.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View