Packet Drop Avoidance for High-speed network transmission protocol
Skip to main content
Open Access Publications from the University of California

Packet Drop Avoidance for High-speed network transmission protocol


As network bandwidth continues to grow and longer paths are used to exchange large scientific data between storage systems and GRID computation, it has become increasingly obvious that there is a need to deploy a packet drop avoidance mechanism into network transmission protocols. Current end-to-end congestion avoidance mechanisms used in Transmission Control Protocol (TCP) have worked well on low bandwidth delay product networks, but with newer high-bandwidth delay networks they have shown to be inefficient and prone to unstable. This is largely due to increased network bandwidth coupled with changes in internet traffic patterns. These changes come from a variety of new network applications that are being developed to take advantage of the increased network bandwidth. This paper will examine the end-to-end congestion avoidance mechanism and perform a step-by-step analysis of its theory. In addition we will propose an alternative approach developed as part of a new network transmission protocol. Our alternative protocol uses a packet drop avoidance (PDA) mechanism built on top of the maximum burst size (MBS) theory combined with a real-time available bandwidth algorithm.

Main Content
Current View