Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

A Resonant Cockcroft-Walton Switched-Capacitor Converter Achieving Full ZCS and >10kW/inch3 Power Density

Abstract

Hybrid LC switched-capacitor converter architectures have demonstrated high power density while retaining efficiency at high conversion ratios. This work presents a resonant Cockcroft-Walton (CW) converter that achieves full zero-current switching (ZCS) on all switches using a single inductor and requiring only one current sensor. To do so, an N-phase clocking scheme is employed, eliminating the parallel paths that typically introduce transient shorting losses in a conventional 2-phase CW converter. The reduced voltage stress on the CW's fly capacitors results in a dramatic reduction in volume when using common MLCC capacitors. A discrete 1:5 CW prototype using silicon FETs and a spiral trace inductor was assembled on two commonly available PCB processes: 0.8 mm FR4 with 2 oz. Cu, and 0.127 mm polyimide film with 0.75 oz. Cu. The latter achieved a peak efficiency of 95% and a maximum power density of 0.686 W/mm3 (11.2 kW/inch3) in a volume of 44.5 mm3 (0.00271 inch3), excluding level-shifting and clock generation circuits.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View