Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation
Skip to main content
eScholarship
Open Access Publications from the University of California

Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation

  • Author(s): Holbrook, A
  • Lan, S
  • Vandenberg-Rodes, A
  • Shahbaba, B
  • et al.
Abstract

We extend the application of Hamiltonian Monte Carlo to allow for sampling from probability distributions defined over symmetric or Hermitian positive definite matrices. To do so, we exploit the Riemannian structure induced by Cartan's century-old canonical metric. The geodesics that correspond to this metric are available in closed-form and---within the context of Lagrangian Monte Carlo---provide a principled way to travel around the space of positive definite matrices. Our method improves Bayesian inference on such matrices by allowing for a broad range of priors, so we are not limited to conjugate priors only. In the context of spectral density estimation, we use the (non-conjugate) complex reference prior as an example modeling option made available by the algorithm. Results based on simulated and real-world multivariate time series are presented in this context, and future directions are outlined.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View