Skip to main content
eScholarship
Open Access Publications from the University of California

Coding Strategies in Memory for 3D Objects: The Influence of Task Uncertainty

Abstract

Memory is limited in capacity, which means that we must choose what information to prioritize for storage. Part of knowing what to prioritize is predicting future needs. For example, if you view a 3D object, later on you may wish to recall exactly how it was oriented. Alternatively, you might need to remember its shape, independent of viewpoint. Given this kind of uncertainty, a good strategy would be to store multiple kinds of information about the objects we observe, and then decode in a task-dependent manner. We tested whether people apply these strategies in the specific domain of short-term memory for novel faces. To test whether people store various kinds of information about a face, and then decode in a task-dependent manner, we modeled their responses in a memory task using features (extracted from deep neural networks) that varied in how much 3D information they carried. We found strong evidence for a mixed-storage strategy, which did not vary in response to task demands. Our results suggest that in order to fully understand resource allocation and retrieval strategies in human memory, it may be critical to consider not just the distribution over tasks in people's natural environments, but also task uncertainty at the time of encoding.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View