Skip to main content
Open Access Publications from the University of California

Boarding is Associated with Reduced Emergency Department Efficiency that is not Mitigated by a Provider in Triage


Introduction: Boarding of patients in the emergency department (ED) is associated with decreased ED efficiency. The provider-in-triage (PIT) model has been shown to improve ED throughput, but it is unclear how these improvements are affected by boarding. We sought to assess the effects of boarding on ED throughput and whether implementation of a PIT model mitigated those effects.

Methods: We performed a multi-site retrospective review of 955 days of ED operations data at a tertiary care academic ED (AED) and a high-volume community ED (CED) before and after implementation of PIT. Key outcome variables were door to provider time (D2P), total length of stay of discharged patients (LOSD), and boarding time (admit request to ED departure [A2D]).

Results: Implementation of PIT was associated with a decrease in median D2P by 22 minutes or 43% at the AED (p < 0.01), and 18 minutes (31%) at the CED (p < 0.01). LOSD also decreased by 19 minutes (5.9%) at the AED and 8 minutes (3.3%) at the CED (p<0.01). After adjusting for variations in daily census, the effect of boarding (A2D) on D2P and LOSD was unchanged, despite the implementation of PIT. At the AED, 7.7 minutes of boarding increased median D2P by one additional minute (p < 0.01), and every four minutes of boarding increased median LOSD by one minute (p < 0.01). At the CED, 7.1 minutes of boarding added one additional minute to D2P (p < 0.01), and 4.8 minutes of boarding added one minute to median LOSD (p < 0.01).

Conclusion: In this retrospective, observational multicenter study, ED operational efficiency was improved with the implementation of a PIT model but worsened with boarding. The PIT model was unable to mitigate any of the effects of boarding. This suggests that PIT is associated with increased efficiency of ED intake and throughput, but boarding continues to have the same effect on ED efficiency regardless of upstream efficiency measures that may be designed to minimize its impact.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View