Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

Abstract

Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method to characterize the mode of motion of nanocarriers and to quantify their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP-DOPC/DNA and DC-Chol-DOPE/DNA lipoplexes in CHO-K1 live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient, D ≈ 0.003 µm2/s). In the cytosol, the lipoplexes' motion was characterized by active transport with average velocity ν ≈ 0.03 µm/s and random motion. The method permitted us to generate intracellular transport map showing several regions of concerted motion of lipoplexes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View