Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Mechanism of Nucleation and Growth of Aβ40 Fibrils from All-Atom and Coarse-Grained Simulations

Abstract

In this work, we characterize the nucleation and elongation mechanisms of the "diseased" polymorph of the amyloid-β 40 (Aβ40) fibril using an off-lattice coarse-grained (CG) protein model. After determining the nucleation size and subsequent stable protofibrillar structure from the CG model, validated with all-atom simulations, we consider the "lock and dock" and "activated monomer" fibril elongation mechanisms for the protofibril by statistical additions of a monomer drawn from four different ensembles of the free Aβ40 peptide to grow the fibril. Our CG model shows that the dominant mechanism for fibril elongation is the lock and dock mechanism across all monomer ensembles, even when the monomer is in the activated form. Although our CG model finds no thermodynamic difference between the two fibril elongation mechanisms, the activated monomer is found to be kinetically faster by a factor of 2 for the "locking" step compared with all other structured or unstructured monomer ensembles.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View