Skip to main content
eScholarship
Open Access Publications from the University of California

Combinatorial Theory

Combinatorial Theory banner

Maximal cocliques in the generating graphs of the alternating and symmetric groups

Published Web Location

https://doi.org/10.5070/C62156879Creative Commons 'BY' version 4.0 license
Abstract

The generating graph \(\Gamma(G)\) of a finite group \(G\) has vertex set the non-identity elements of \(G\), with two elements adjacent exactly when they generate \(G\). A coclique in a graph is an empty induced subgraph, so a coclique in \(\Gamma(G)\) is a subset of \(G\) such that no pair of elements generate \(G\). A coclique is maximal if it is contained in no larger coclique. It is easy to see that the non-identity elements of a maximal subgroup of \(G\) form a coclique in \(\Gamma(G)\), but this coclique need not be maximal. In this paper we determine when the intransitive maximal subgroups of \(\mathrm{S}_n\) and \(\mathrm{A}_n\) are maximal cocliques in the generating graph. In addition, we prove a conjecture of Cameron, Lucchini, and Roney-Dougal in the case of \(G = \mathrm{A}_n\) and \(\mathrm{S}_n\), when \(n\) is prime and \({n \neq \frac{q^d-1}{q-1}}\) for all prime powers \(q\) and \(d \geq 2\). Namely, we show that two elements of \(G\) have identical sets of neighbours in \(\Gamma(G)\) if and only if they belong to exactly the same maximal subgroups.

Mathematics Subject Classifications: 20D06, 05C25, 20B35

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View