Skip to main content
Open Access Publications from the University of California

Depressurization‐Induced Fines Migration in Sediments Containing Methane Hydrate: X‐Ray Computed Tomography Imaging Experiments


Depressurization of hydrate-bearing sediments (HBS) can cause the movement of fine particles, and in turn, such fines migration affects fluid flow and mechanical behavior of sediments, ultimately affecting long-term hydrocarbon production and wellbore stability. This study investigated how and to what extent depressurization of HBS causes fines migration using X-ray computed tomography (CT) imaging. Methane hydrate was synthesized in sediments with 10% fines content (FC), composed of sands with silt and/or clay, and the hydrate-bearing samples were stepwisely depressurized while acquiring CT images. The CT images were analyzed to quantify the spatial changes in FC in the host sediment and thus to capture the fines migration during depressurization. It was found that the FC changes began occurring from the hydrate dissociation regions. This confirms that the multiphase flow caused by depressurization accompanies fines migration. Depressurization of HBS with a hydrate saturation of ~20–40% caused FC reduction from ~10% to ~6–9%, and the extent of fines migration differed with the particle sizes of the host sands and the types of fines. It was found that fines migration was more pronounced with coarse sands and with silty fines. Such observed level of FC reduction is estimated to increase sediment permeability by several factors based on the Kozeny-type permeability model. Our results support the notion that the extent of fines migration and its effect on fluid flow behavior need to be assessed in consideration of physical properties of host sediment and fine particles to identify optimum depressurization strategies.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View