Skip to main content
Open Access Publications from the University of California

Adaptive response by an electrolyte: resilience to electron losses in a dye-sensitized porous photoanode.


Photovoltage and photocurrents below theoretical limits in dye-sensitized photoelectrochemical solar energy conversion systems are usually attributed to electron loss processes such as dye-electron and electrolyte-electron recombination reactions within the porous photoanode. Whether recombination is a major loss mechanism is examined here, using a multiscale reaction-diffusion computational model to evaluate system characteristics. The dye-sensitized solar cell with an I-/I3 - redox couple is chosen as a simple, representative model system because of the extensive information available for it. Two photoanode architectures with dye excitation frequencies spanning 1-25 s-1 are examined, assuming two distinct recombination mechanisms. The simulation results show that although electrolyte-electron reactions are very efficient, they do not significantly impact photoanode performance within the system as defined. This is because the solution-phase electrolyte chemistry plays a key role in mitigating electron losses through coupled reactions that produce I- within the photoanode pores, thereby cycling the electrolyte species without requiring that all electrolyte reduction reactions take place at the more distantly located cathode. This is a functionally adaptive response of the chemistry that may be partly responsible for the great success of this redox couple for dye-sensitized solar cells. The simulation results provide predictions that can be tested experimentally.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View