Skip to main content
Open Access Publications from the University of California

In Vivo Characterization of a Vertebrate Ultra-conserved Enhancer


Genomic sequence comparisons between human, mouse and pufferfish (Takifugu rubripes (Fugu))have revealed a set of extremely conserved noncoding sequences. While this high degree of sequence conservation suggests severe evolutionary constraint and predicts a lack of tolerance to change in order to retain in vivo functionality, such elements have been minimally explored experimentally. In this study, we describe the in-depth characterization of an ancient conserved enhancer, Dc2 located near the dachshund gene, which displays a human-Fugu identity of 84 percent over 424 basepairs (bp). In addition to this large overall conservation, we find that Dc2 is characterized by the presence of a large block of sequence (144 bp) that is completely identical between human, mouse, chicken, zebrafish and Fugu. Through the testing of reporter vector constructs in transgenic mice, we observed that the 424 bp Dc2 conserved element is necessary and sufficient for brain tissue enhancer activity. In vivo analyses also revealed that the 144 bp 100 percent conserved sequence is necessary, but not sufficient, to replicate Dc2 enhancer function. However, the introduction of two separate 16 bp insertions into the highly conserved enhancer core did not cause any detectable modification of its in vivo activity. Our observations indicate that the 144 bp 100 percent conserved element is tolerant of change at least at the resolution of this transgenic mouse assay and suggest that purifying selection on Dc2 sequence might not be as strong as we predicted or that some unknown property also constrains this highly conserved enhancer sequence.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View