Skip to main content
eScholarship
Open Access Publications from the University of California

Visual Search and Decision Making in Bees: Time, Speed, and Accuracy

Abstract

An insect searching a meadow for flowers may detect several flowers from different species per second, so the task of choosing the right flowers rapidly is not trivial. Here we apply concepts from the field of visual search in human experimental psychology to the task a bee faces in searching a meadow for familiar flowers, and avoiding ‘‘distraction’’ by unknown or unrewarding flowers. Our approach highlights the importance of visual information processing for understanding the behavioral ecology of foraging. Intensity of illuminating light, target contrast with background (both chromatic and achromatic), and number of distractors are all shown to have a direct influence on decision times in behavioral choice experiments. To a considerable extent, the observed search behavior can be explained by the temporal and spatial properties of neuronal circuits underlying visual object detection. Our results also emphasize the importance of the time dimension in decision making. During visual search in humans, improved accuracy in solving discrimination tasks comes at a cost in response time, but the vast majority of studies on decision making in animals have focused on choice accuracy, not speed. We show that in behavioral choice experiments in bees, there is a tight link between the two. We demonstrate both between-individual and within- individual speed-accuracy tradeoffs, whereby bees exhibit considerable behavioral flexibility in solving visual search tasks. Motivation is an important factor in selection of behavioral strategies for a search task, and sensory discrimination capabilities may be underestimated by studies that quantify accuracy of behavioral choice but neglect the temporal dimension.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View