Skip to main content
eScholarship
Open Access Publications from the University of California

Implementing Self Models Through Joint-Embedding Predictive Architecture

Creative Commons 'BY' version 4.0 license
Abstract

Self models contribute to key functional domains of human intelligence that are not yet presented in today's artificial intelligence. One important aspect of human problem-solving involves the use of conceptual self-knowledge to detect self-relevant information presented in the environment, which guides the subsequent retrieval of autobiographical memories that are relevant to the task at hand. This process enables each human to behave self-consistently in our own way across complex situations, manifested as self-interest and trait-like characteristics. In this paper, we outline a computational framework that implements the conceptual aspect of human self models through a modified version of the joint-embedding predictive architecture. We propose that through the incorporation of human-like autobiographical memory retrieval and self-importance evaluation, the modified architecture could support machine agents with significantly enhanced self-consistency, which could be applied to deliver more believable simulations of human behaviors.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View