Skip to main content
eScholarship
Open Access Publications from the University of California

About

SFEWS provides credible scientific information on California's complex water issues, linking new science to policy with great effect. SFEWS retains a regional focus on the San Francisco Bay and the Sacramento–San Joaquin Delta, also known as the Bay–Delta watershed. At the heart of open access from the California Digital Library, SFEWS's scholarly output ranks #1 for the UC Davis Institute  of the Environment and ranks #3 campus wide.

Volume 13, Issue 4, 2015

Issue cover
Cover Caption: Rainbow/steelhead trout (Onchorynchus mykiss). Photo by Jovana Milanko.

Research Article

Sturgeon in the Sacramento–San Joaquin Watershed: New Insights to Support Conservation and Management

The goal of a day-long symposium on March 3, 2015, Sturgeon in the Sacramento–San Joaquin Watershed: New Insights to Support Conservation and Management, was to present new information about the physiology, behavior, and ecology of the green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) to help guide enhanced management and conservation efforts within the Sacramento–San Joaquin watershed. This symposium identified current unknowns and highlighted new electronic tracking technologies and physiological techniques to address these knowledge gaps. A number of presentations, each reviewing ongoing research on the two species, was followed by a round-table discussion, in which each of the participants was asked to share recom-mendations for future research on sturgeon in the watershed. This article presents an in-depth review of the scientific information presented at the sympo-sium with a summary of recommendations for future research.

Riverine Nutrient Trends in the Sacramento and San Joaquin Basins, California: A Comparison to State and Regional Water Quality Policies

Non-point source (NPS) contaminant control strategies were initiated in California in the late 1980s under the authority of the State Porter–Cologne Act and eventually for the development of total maximum daily load (TMDL) plans, under the federal Clean Water Act. Most of the NPS TMDLs developed for California’s Central Valley (CV) region were related to pesticides, but not nutrients. Efforts to reduce pesticide loads and concentrations began in earnest around 1990. The NPS control strategies either encouraged or mandated the use of management practices (MPs). Although TMDLs were largely developed for pesticides, the resultant MPs might have affected the runoff of other potential contaminants (such as nutrients). This study evaluates the effect of agricultural NPS control strategies implemented in California’s CV before and between 1990 and 2013, on nutrients, by comparing trends in surface-water concentrations and loads. In general, use of MPs was encouraged during a “voluntary” period (1990 to 2004) and mandated during an “enforcement” period (2004 to 2013). Nutrient concentrations, loads, and trends were estimated by using a recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS) model. Sufficient total phosphorus (TP), total nitrogen (TN), and nitrate (NO3) data were available to compare the voluntary and enforcement periods for twelve sites within the lower Sacramento and San Joaquin basins. Ammonia concentrations and fluxes were evaluated at a subset of these sites. For six of these sites, flow-normalized mean annual concentrations of TP or NO3 decreased at a faster rate during the enforcement period than during the voluntary period. Concentration changes during similar years and ranges of flow conditions suggest that MPs designed for pesticides may also have reduced nutrient loads. Results show that enforceable NPS policies, and accelerated MP implementation, limits NPS pollution, and may control runoff of non-targeted constituents such as nutrients.

  • 1 supplemental PDF

You Can't Unscramble an Egg: Population Genetic Structure of Oncorhynchus mykiss in the California Central Valley Inferred from Combined Microsatellite and Single Nucleotide Polymorphism Data

Steelhead/rainbow trout (Oncorhynchus mykiss) are found in all of the major tributaries of the Sacramento and San Joaquin rivers, which flow through California’s Central Valley and enter the ocean through San Francisco Bay and the Golden Gate. This river system is heavily affected by water development, agriculture, and invasive species, and salmon and trout hatchery propagation has been occurring for over 100 years. We collected genotype data for 18 highly variable microsatellite loci and 95 single nucleotide polymorphisms (SNPs) from more than 1,900 fish from Central Valley drainages to analyze genetic diversity, population structure, differentiation between populations above and below dams, and the relationship of Central Valley O. mykiss populations to coastal California steelhead. In addition, we evaluate introgression by both hatchery rainbow trout strains, which have primarily native Central Valley ancestry, and imported coastal steelhead stocks. In contrast to patterns typical of coastal steelhead, Central Valley O. mykiss above and below dams within the same tributary were not found to be each others’ closest relatives, and we found no relationship between genetic and geographic distance among below-barrier populations. While introgression by hatchery rainbow trout strains does not appear to be widespread among above-barrier populations, steelhead in the American River and some neighboring tributaries have been introgressed by coastal steelhead. Together, these results demonstrate that the ancestral population genetic structure that existed among Central Valley tributaries has been significantly altered in contemporary populations. Future conservation, restoration, and mitigation efforts should take this into account when working to meet recovery planning goals.

Distribution and Habitat Associations of California Black Rail (Laterallus jamaicensis cortuniculus) in the Sacramento–San Joaquin Delta

Past studies documenting the distribution and status of state “Threatened" California black rail (Laterallus jamaicensis coturniculus; hereafter black rail) have largely omitted the Sacramento—San Joaquin Delta (hereafter Delta). During March to May of 2009–2011, we conducted call–playback surveys to assess the status of the species within a wide range of wetland habitats of the central Delta region. We detected black rails at 21 of 107 discrete wetland sites, primarily on in-channel islands with dense cover. To better understand the habitat and land cover characteristics, we developed a model of habitat suitability from these occurrence data and a fine-scale vegetation and land use dataset using MaxEnt. We also evaluated differences in the size of wetlands at sites where black rails were detected versus where they were not. Through surveys and quantitative modeling, we found black rail presence differed from other regions within California and Arizona, in that it was positively associated with tall (1 to 5 m) emergent vegetation interspersed with riparian shrubs. Specific plants correlated with black rail presence included emergent wetland (Bolboschoenus acutus, B. californicus, B. acutus, Typha angustifolia, T. latifolia, Phragmites australis) and riparian (Salix exigua, S. lasiolepis, Rosa californica, Rubus discolor, Cornus sericea) species. Median patch size was significantly larger and perimeter-to-area ratios were significantly lower at wetland sites where black rails were found. These results provide a preliminary characterization of black rail habitat in the Delta region and highlight the need for better understanding of this listed species’ population size and habitat use in the region, in light of anticipated climate change effects and proposed large-scale restoration in the Delta.