About
SFEWS provides credible scientific information on California's complex water issues, linking new science to policy with great effect. SFEWS retains a regional focus on the San Francisco Bay and the Sacramento–San Joaquin Delta, also known as the Bay–Delta watershed. At the heart of open access from the California Digital Library, SFEWS's scholarly output ranks #1 for the UC Davis Institute of the Environment and ranks #3 campus wide.
Volume 5, Issue 3, 2007
Research Article
Patterns in the Use of a Restored California Floodplain by Native and Alien Fishes
Fishes were sampled on the restored floodplain of the Cosumnes River in Central California in order to determine patterns of floodplain use. The floodplain was sampled for seven years (1998-2002, 2004-2005) during the winter-spring flooding season. The fishes fell into five groups: (1) floodplain spawners, (2) river spawners, (3) floodplain foragers, (4) floodplain pond fishes, and (5) inadvertent users. Eight of the 18 abundant species were natives, while the rest were aliens. There was a consistent pattern of floodplain use, modified by timing and extent of flooding. The first fishes to appear were floodplain foragers, inadvertent users, and juvenile Chinook salmon (river spawners). Next were floodplain spawners, principally Sacramento splittail and common carp. At the end of the season, in ponds of residual water, non-native annual fishes, mainly inland silverside and western mosquitofish, became abundant. Adult spawners left when inflow decreased; their juveniles persisted as long as flood pulses kept water levels up and temperatures low. Juvenile splittail and carp quickly grew large enough to dominate floodplain fish samples, along with smaller numbers of juvenile Sacramento sucker and pikeminnow (river spawners). Such juveniles left the Relatively few fishes that used the floodplain for spawning or rearing became stranded, except late season alien fishes. Most alien fishes had resident populations in adjacent river, sloughs, and ditches and were not dependent on the floodplain for persistence. This indicates that Central Valley floodplains managed to favor native fishes should have the following char- acteristics: (1) extensive early season flooding, (2) complete drainage by the end of the flooding season, (3) few areas with permanent water, (4) a mosaic of physical habitats, (5) regular annual flooding but with high variability in flood regime.
Effects of Flow Diversions on Water and Habitat Quality: Examples from California's Highly Manipulated Sacramento–San Joaquin Delta
We use selected monitoring data to illustrate how localized water diversions from seasonal barriers, gate operations, and export pumps alter water quality across the Sacramento-San Joaquin Delta (California). Dynamics of water-quality variability are complex because the Delta is a mixing zone of water from the Sacramento and San Joaquin Rivers, agricultural return water, and the San Francisco Estuary. Each source has distinct water-quality characteristics, and the contribution of each source varies in response to natural hydrologic variability and water diversions. We use simulations with a tidal hydrodynamic model to reveal how three diversion events, as case studies, influence water quality through their alteration of Delta-wide water circulation patterns and flushing time. Reduction of export pumping decreases the proportion of Sacramento- to San Joaquin-derived fresh water in the central Delta, leading to rapid increases in salinity. Delta Cross Channel gate operations control salinity in the western Delta and alter the freshwater source distribution in the central Delta. Removal of the head of Old River barrier, in autumn, increases the flushing time of the Stockton Ship Channel from days to weeks, contributing to a depletion of dissolved oxygen. Each shift in water quality has implications either for habitat quality or municipal drinking water, illustrating the importance of a systems view to anticipate the suite of changes induced by flow manipulations, and to minimize the conflicts inherent in allocations of scarce resources to meet multiple objectives.
Historic and Present Distribution of Chinook Salmon and Steelhead in the Calaveras River
Interest is great in projects that would restore Central Valley steelhead (Oncorhynchus mykiss) and Central Valley Chinook salmon (Oncorhynchus tshawytscha) to California drainages where they have historically existed and where there is good quality habitat upstream of instream barriers. The Calaveras River has garnered renewed attention for its potential to support these anadromous fish. I evaluated migration opportunity in the Calaveras River, and whether these salmonids could have been present in the river historically, by comparing historical anecdotal and documented observations of Chinook salmon and steelhead to recorded flows in the river and Mormon Slough, the primary migration corridors. Collected data show that these fish used the river before New Hogan Dam was constructed in 1964. Three different Central Valley Chinook salmon runs, including fall-, late-fall- and spring-run salmon, and steelhead may have used the river before the construction of New Hogan Dam. Fall and possibly winter run and steelhead used the river after dam construction. The timing and amount of flows in the Calaveras River, both before and after the construction of New Hogan Dam, provided ample opportunity for salmonids to migrate up the river in the fall, winter, and spring seasons when they were observed. Flows less than 2.8 m3/s (100 ft3/s) can attract fish into the lower river channel and this was likely the case in the past, as well. Even in dry years of the past, flows in the river exceeded 5.6 m3/s (200 ft3/s), enough for fish to migrate and spawn. Today, instream barriers and river regulation, which reduced the number of high flow events, has led to fewer opportunities for salmon to enter the river and move upstream to spawning areas even though upstream spawning conditions are still adequate. Improving migration conditions would allow salmonids to utilize upstream spawning areas once again.