SFEWS Vol. 20, Issue 2 | June 2022
Climate Change Impacts on San Francisco Estuary Aquatic Ecosystems: A Review
Climate change is intensifying the effects of multiple interacting stressors on aquatic ecosystems, particularly in estuaries. In the San Francisco Estuary, signals of climate change are apparent in the long-term monitoring record. Here we synthesize current and potential future climate change effects on three main ecosystems (floodplain, tidal marsh, and open water) in the upper estuary and two representative native fishes that commonly occur in these ecosystems (anadromous Chinook Salmon, Oncorhynchus tshawytscha and estuarine resident Sacramento Splittail, Pogonichthys macrolepidotus).
Considerations for the Development of a Juvenile Production Estimate for Central Valley Spring-Run Chinook Salmon
Effective species management depends on accurate estimates of population size. There are, however, no estimates of annual juvenile production for Central Valley spring-run Chinook Salmon (“spring run”), a highly imperiled species in California, making it difficult to evaluate population status and effectively manage key issues such as entrainment of this species at water diversions. In recognition of this critical information gap, we initiated an effort to develop a juvenile production estimate (JPE) for spring run, defined here as an annual forecast of the number of juvenile Central Valley spring-run Chinook Salmon that enter the Sacramento–San Joaquin Delta (“Delta”) from the Sacramento Valley.
Machine Learning Forecasts to Reduce Risk of Entrainment Loss of Endangered Salmonids at Large-Scale Water Diversions in the Sacramento–San Joaquin Delta, California
Incidental entrainment of fishes at large-scale state and federal water diversion facilities in the Sacramento-San Joaquin Delta, California, can trigger protective management actions when limits imposed by environmental regulations are approached or exceeded. These actions can result in substantial economic costs, and likewise they can affect the status of vulnerable species. Here, we examine data relevant to water management actions during January–June; the period when juvenile salmonids are present in the Delta.
Gill Net Selectivity for Fifteen Fish Species of the Upper San Francisco Estuary
Gill-net size selectivity for 15 fish species occurring in the upper San Francisco Estuary was estimated from a data set compiled from multiple studies which together contained 7,096 individual fish observations from 882 gill net sets. The gill nets considered in this study closely resembled the American Fisheries Society’s recommended standardized experimental gill nets for sampling inland waters. Relationships between gill-net mesh sizes and the sizes for each fish species retained in them were estimated indirectly using generalized linear modeling and maximum likelihood.
Nutrient and Trace Element Contributions from Drained Islands in the Sacramento–San Joaquin Delta, California
Inventorying nutrient and trace element sources in the Sacramento-San Joaquin Delta (the Delta) is critical to understanding how changes—including alterations to point source inputs such as upgrades to the Sacramento Regional Wastewater Treatment Plant (SRWTP) and landscape-scale changes related to wetland restoration—may alter the Delta’s water quality. While island drains are a ubiquitous feature of the Delta, limited data exist to evaluate island drainage mass fluxes in this system. To better constrain inputs from island drains, we measured monthly discharge along with nutrient and trace element concentrations in island drainage on three Delta islands and surrounding rivers from June 2017 to September 2018.
Volume 4, Issue 3, 2006
Research Article
Flow Convergence Caused by a Salinity Minimum in a Tidal Channel
Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged) circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign) of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1) A simple one-dimensional (1D) finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2) A three-dimensional (3D) hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient) and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3) A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to transport through a constant direction density gradient. (4) A sediment transport model demonstrates increased deposition at the near-bed null point of the salinity minimum, as compared to the constant direction gradient null point. These results are corroborated by historically noted large sedimentation rates and a local maximum of selenium accumulation in clams at the null point in Mare Island Strait.
Research Monograph
Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California
This monograph presents an extensive review of the biology and management of Chinook salmon and steelhead in the Central Valley of California. Relevant data and publications on these populations are summarized and discussed in the context of the wider professional literature, with emphasis on the importance of evolutionary considerations in the assessment of populations and in their management, the need to manage populations together with their environments, and the contradiction between maintaining a major hatchery program to support a mixed-stock ocean fishery and trying to maintain or restore populations adapted to natural or semi-natural habitats. Recommendations are presented for management and monitoring—for example for a thorough review of hatchery operations, for more emphasis on monitoring individual-based factors such the physiological condition and growth rates of juveniles, and for simulation of major restoration actions and monitoring programs. The 17 chapters cover major conceptsin salmon biology and conceptual foundations for management, and Central Valley Chinook and steelhead populations and their habitat, growth and migration, habitat use, harvest, hatcheries, modeling, monitoring, and management.
- 28 supplemental PDFs